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SUMMARY

IIigh-temperature thin-shell leading-edge buckling test data are analyzed using NASA structural analysis

(NASTRAN) as a finite element tool for predicting thermal buckling characteristics. Buckling points are

predicted for several combinations of edge boundary conditions. The problem of relating the appropriate

plate area to the edge stress distribution and the stress gradient is addressed in terms of analysis assump-

tions. Local plasticity was found to occur on the specimen analyzed, and this tended to simplify the basic

problem since it effectively equalized the stress gradient from loaded edge to loaded edge. The initial load-

ing was found to be difficult to select for the buckling analysis because of the transient nature of thermal

stress. Multiple initial model loadings are likely required for complicated thermal stress time histories

before a pertinent finite element buckling analysis can be achieved. The basic mode shapes determined

from experimentation were correctly identified from computations.

INTRODUCTION

The prediction of the buckling point of flat plates subjected to thermal stresses is a complicated problem of

emerging significance. The contemporary problem of boundary condition definition is complicated in the

elevated temperature situation by the presence of two-dimensional nonlinear variations in thermal stress.

Mathematical approaches to such problems are formidable; however, finite element computer programs

provide a means for a solution.

The purpose of this report is to analyze previous buckling test data (Jenkins and Sefic, 1966) using

NASA structural analysis (NASTRAN) (NASA-COSMIC, 1983) as the means to predict the buckling

point. Test data were acquired defining the buckling points of thin-shell leading-edge specimens of varying

dimensions. Buckling boundaries were established empirically because at the time of the test neither

analysis tools nor strain sensors were available to define the stress pattern at elevated temperatures.

The measured temperature data are used to compute thermal stresses, and the resulting thermal stress

distribution is used as the loading from which eigenvalues are computed for the first three buckling mode

shapes. The computed point at which buckling is expected to occur is compared with the actual point at

which buckling did occur.
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warping displacement in the z direction, in.
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eigenvalue, numerical factor

Poisson's ratio

critical buckling stress, lb/in. 2

thermal stress, lb/in. 2

yield stress, lb/in. 2

EXPERIMENTAL DATA

One of the 51 flanged, thin-shell leadlng-edge specimens tested by Jenkins and Sefic (1966) has been

selected for detailed examination. The basic geometry of the specimen is shown in figure l(a) where

specific dimensions are identified. The material of the specimen is the nickel-based alloy Inconel X-750.

The length of the specimen was 16.0 in. and the taper angle was 15 °. A channel of 0.080-in. material

with a 1.0-in. flange was spot-welded to the specimen as shown in figure l(a). The specimens were given

a full heat treatment (Syracuse University, 1982). Prior to experimentation, each of the specimens was

instrumented with externally mounted chromel-alumel thermocouples (fig. l(b)). Appropriate structural

restraint was provided by a 417.7 steel beam by milling off the outside 0.4 in. of the top of the flanges as

shown in figure l(c). The thermocouples were located at the stagnation line, at 0.38, 1.50, and 2.50 in.

below the stagnation line.

A sketch of the assembled test is shown in figure 2. A bank of radiant heat lamps was arranged about

the upper 1.00 in. of the specimen. External heat transfer was allowed only on the radial portion of the

specimen. The remainder of the specimen was protected from radiant heat by sheets of high-temperature

insulation. The specimen was attached to the beam by inserting bearing plates inside the specimen and

passing symmetrically positioned stainless steel bolts through the bearing plate, through the web of the

channel, and finally through the flange of the beam.

A control thermocouple was positioned on the stagnation line of the cylindrical part of the leading-edge

specimen 8 in. from each end. The heating of the specimen was controlled with this thermocouple. The

temperature along the stagnation line was programmed to" rise from room temperature at a rate of 50°F

per sec to 1700°F. The temperature was held at this level for 10 sec. Four additional thermocouples were

irlstalled on the specimen to monitor chord temperature gradients. The locations of the thermocouples

are shown on figure l(b). The experiment was conducted by heating the specimen according to the

temperature-time history of figure 3. Temperatures were recorded continuously, ' and observers noted the

occurrence of buckling. Details not included in this report may be found in Jenkins and Sefic (1966).

BUCKLING MODES

The basic information obtained from the experimental test of the specimen shown in figure l(a) included

(1) the manner in which the specimen buckled, (2) the stagnation point temperature at the time of

buckling, and (3) the temperature distribution at the time of buckling. Two modes of unstable behavior

were observed as shown in figure 4. Mode A occurred in the central region of the specimen flanges. This

mode of buckling was either a single or multiple wave pattern similar to the buckling of a plate compressed
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in one direction with unequal restraint on the edges parallel to the compression. The specific dimensions

of the wave patterns were not recorded. Mode B buckling also occurred in the flanges of the specimen.

This mode of buckling was a single-wave pattern similar to that in a compressed thin column. The two

types of buckling failures occurred in the flat sections of the specimens, reflecting the greater stabihty of

curved or shell type areas relative to the flat or plate type areas. Therefore, the analysis was approached

as a plate problem.

ANALYTICAL CONSIDERATIONS

The basic geometrical considerations for formulating a plate buckling problem are the width b, length a,

and thickness h (fig. 5). The pertinent forces are the normal forces Nx and Ny and the shear forces

Nxy = Nyx. The other pertinent variables are the stiffness of the plate and the boundary conditions at the

edges of the plate.

Plate buckling is approached analytically by examining the energy of bending and the work done by

the edge forces for all mode shapes. The plate is stable if the energy of bending is greater than the work

done by the edge forces for all mode shapes. The plate is unstable if the energy of bending is less than the

work done by the edge forces for one or more mode shapes.

The basic differential equation (Timoshenko and Gere, 1961) for the buckled plate is

0q4W (_4W 04W 1 ( 02W . 02W " 02W._

Ox'''_ + 21)x20y2 + 04y -- D \Nx'-O_x2 + lvY'-_'y 2 + 2Nzyoycgx) (1)

The most commonly used solution of equation (1) is

oo ¢_ mIIx nIIy
w = E E Amn sin -- sin -- (2)

a b
m=l n=l

The basic boundary conditions reflecting edge conditions of zero deflection, zero rotation, zero bending,

and zero shear are, respectively,

w=0 (3)
Ow Ow

Oy - 0 , Ox 0 (4)

02w 02w 02w 02w

=0 , (51

03w . 03w Oaw 03w

oy3 + (2 - o + (2 - - o (6)- v) O-_y ' Ox 3 cOy20x

The classical approach to plate buckling has been to solve equation (1) with the solution of equation (2)

for sets of the boundary conditions in equations (3) through (6). This has provided a wide variety of

analytically solved problems (Gerard and Becker, 1957). When thermal stresses are the source of the load,

the problem changes in nature in three ways, as follows: (1) various parts of the plate are at different

temperatures, hence, there is a nonuniform stiffness; (2) the edge loadings are nonlinear; and (3) the stress

field may vary in two directions, thus complicating the definition of the edge loads. These factors render

an analytical solution nearly impossible. As will be shown later in this report, these factors considerably

complicate a solution even with finite element computational capability.



STRESS MODEL

A NASTRAN (NASA-COSMIC, 1983) stress model of a symmetrical one-quarter of the test specimen was

developed as shown in figure 6(a). An end view of the model is shown in figure 6(b). The model was

developed using plate elements for the specimen and a bar element for the restraining beam. The bar

element was developed with a moment of inertia value of half of the beam. Temperatures recorded during

the test (Jenkins and Sefic, 1966) were smeared to the grid points, and thermal stresses were calculated.

Isostresses for axial normal thermal stress and lateral normal thermal stress are shown in figures 7(a)

and 7(b), respectively. These stress distributions will be used to define edge loadings for the NASTtLAN

buckling model.

BUCKLING MODEL

The area of the test specimen modeled for buckling analysis (NASTRAN) is shown in figure 8. The center

half of the fiat region was selected for modeling so that sufficient elements were available to define the

mode shapes. The loading (fig. 8) that was applied to the model is obtained from the thermM stress model

(figs. 6 and 7) for temperatures occurring at 30 sec (fig. 4). This is the load distribution used as the

baseline loading for the NASTRAN buckling runs (solution 5,0). The eigenvalues provide factors by which

the baseline loading may be multiplied to obtain the edge loading at a buckling condition. The inverse

power method (symmetric matrix operations) was used as the eigenvalue extraction approach.

RESULTS AND DISCUSSION

Mode A Analysis

Since the boundary condition at the edges is a primary uncertainty in most cases, a matrix of different

boundary condition combinations was selected to determine the extent of the variation in calculated buck-

ling point (eigenvalue). Since the bottom edge of the area to be analyzed was spot welded to a heavier

doubler, it was concluded that this edge should be clamped. This leaves the upper edge where the circular

part of the specimen begins and the two end edges as boundary conditions to be varied. This leaves four

combinations of boundary conditious to be examined, as follows: (1) upper edge simply supported with the

ends simply supported, (2) upper edge simply supported with the ends clamped, (3) upper edge clamped

with ends simply supported, and (4) upper edge clamped with ends clamped.

These four boundary conditions were used with the baseline loading to obtain NASTRAN runs defining

the eigenvalues for the first three mode shapes (fig. 9). The mode shapes of the buckled plate are shown for

the first three modes for the four combinations of boundary conditions discussed in the previous paragraph.

Thermal stress is induced by the temperature field of the structure. The temperatures within a structure

are rarely steady state, meaning that transient temperatures result in transient thermal stresses. If the

thermal stress is inherently transient, then the thermal stress distribution at one instant is different from

the previous instant. This presents a problem since an edge-loading shape must be derived from the edge

thermal stresses to conduct the buckling analysis. This forces the analyst to select one of many possible

thermally induced edge load distributions as the basis for eigenvalue extraction. Thermal buckling becomes

a very complicated problem if the temperature field inducing thermal stress is highly transient. It is quite

possible that the analyst may have to extract eigenvalues for several edge load distributions. In most

cases, the pertinent thermal stress distribution will correspond to the largest temperature gradient. This

approach was taken for the leading edge in this paper. The maximum temperature gradient occurs at



time = 30 sec (fig. 4). The thermal stress distribution at this time was chosen as the baseline loading to

be distributed to the appropriate grid points. Therefore, if the general expression for transient thermal
stress is

=/(t) (7)

then the baseline distribution of thermally induced edge load would be

= f(30.0) (s)

The thermal stress at failure which the NASTRAN program computes is a multiplying factor (eigen-

value) of the stress distribution, or

aT = )_f(30.O) (9)

Since experimental knowledge is available concerning when the specimen buckled, then the distribution

of thermal stress at the time of buckling can be computed by inputting the temperature distribution at
the time of failure (in this case time = 20.5 Sec) into the stress model. This thermal stress distribution

is designated

aT = f(20.5) (10)

The thermal stress distribution relating to equations (8), (9), and (10) are presented in figure 10. The
baseline thermal stress, equation (8), is represented by the solid line. The thermal stress distribution at

the time of actual buckling corresponds to equation (10). Since there is an eigenvalue for each of the first

three mode shapes and there are four sets of boundary conditions, there are twelve results for equation (9).
There are four values for equation (9) if only the eigenvalues for the first modes are used. The range of

these values is shown as the cross-hatched area in figure 10.

The results of figure 10 are also compared to the exact solution for the buckling of a simply supported

rectangular plate under combined bending and compression as found in Timoshenko and Gere (1961). The
expression for the critical buckling stress is

k :[EI'3/12(1-
O'Ci r _ (11)

Estimates of the numerical factor k and the elastic modulus E were required. The value of k was

extrapolated to be 23.1 and the value of E was estimated to be 24.0 x 106 lb/in. 2 to account for temperature

degradation. This solution is presented as the solid line in figure 10. The critical buckling stress based on

this approach appears to be less than the other results. Since all the edges for this computed value are
presumed to be simply supported, the result is not unexpected.

There are several observations that can be made from the results to this point. The modal shapes

are quite complex. The number of half-waves that the model exhibits implies that a smaller area could

satisfactorily suffice as an appropriate model. The range of eigenvalues for the various boundary conditions

is closely packed. This is encouraging from an analyst's viewpoint because the definition of the boundary

conditions is a complex issue. A skin panel attached to spars or ribs at all four edges is best described

as having a clamped restraint at the edge boundaries. Since some axial rotation of the spars and ribs

is probable, then the boundary condition lies somewhere between clamped and simply supported. The

infinitely long compressed plate of Gerard and Becker (1957) shows a 70 to 80 percent change in buckling

strength (eigenvalue) when the boundary conditions are changed from simply supported to clamped. The

eigenvalues calculated for the thermal stress problem in this paper show no more than 10 percent changes

when boundary.conditions are changed fl'om simply, supported to clamped. This discrepancy is attributed

to the fact that the plate edge loading in Gerard and Becker (1957) is uniform while the edge loading



dueto thermal stressis highly nonuniform. The temperature-inducednonuniformstiffnessof the plate
elementsmay alsocontributeto this discrepancy.The natureof the edgeloadingis a factor the designer
must considerin evaluatingthe significanceof the boundaryconditions.

The resultspresentedin figure10stronglysuggestthat the bucklingstresscanbeaccuratelypredicted
for this problem. In this casewherethe leading-edgetemperatureis consistentlyincreasing,the shape
of the thermal stressfunction f(t) is similar for the range of times. The case where the heat input is

increasing and decreasing would be more difficult to analyze since the baseline thermal stress distribution

would be a widely varying function. Where the function f(t) varies widely, the analyst will have to

examine the complete time history of the thermal stress for the purpose of selecting several pertinent

baseline distributions as the basis for buckling analysis. The correlation in figure 10 is enhanced by the
fact that the thermal stress distribution at time = 30 sec closely resembles the thermal stress distribution

at time = 20.5 sec.

Another factor complicating the problem is pertinent in this case. It is not uncommon for local thermal

stresses to exceed plastic limits because thermal stress distributions can reach excessive values in local areas.

This is true in this case, and the regions of plasticity can be seen in figures 11 and 12 for the times 20.5

and 30.0 sec, respectively. Most of the plasticity occurs in the curved portion of the leading-edge specimen

and this part is not being analyzed as part of the plate buckling mechanism. However, the results obtained

from the thermal stress (that is, the edge loads) model must be altered to account for this phenomenon.

The ideal approach to this problem is a plastic analysis to acquire the precise thermal stress distribution.

Expense and time factors will probably prohibit a plastic analysis if a major component is to be designed

using existing finite element computer codes. An alternate approach, which is also conservative in nature,

is simply to use a plasticity reduction factor so that

aT = _aT_ (12)

where aT is the thermal stess, r] is a numerical coefficient computed as the ratio of yield stress to thermal

stress, and aT_ is the thermal stress at the ith element. The application involves using the stress distribution

defined by the points A-B-C in figure 12. Since part of this segment extends into the curved portion of the

specimen, then the distribution defined by A_-B-C is used for the flat part of the specimen corresponding

to the plate buckling model. Therefore, the baseline thermal stress distribution modified for plasticity can

be seen in figure 13. The distribution a(t, _) corresponds to the distribution defined by A_-B-C in figure 12.

The eigenvalues were recomputed with the buckling model for the modified thermal stress distribution.

The results for both sets of eigenvalues are presented in table 1. It can be seen that this modification of

the load distribution had little effect on the magnitude of the eigenvalues. This is most likely owing to the

fact that the modification to the distribution was close to a restrained edge.

An important assumption that has not been discussed concerns the fact that the edge loads are not the

same on the two ends of the plate area selected for analysis. If the axial normal thermal stress distribution

of figure 7 is examined again, it can be seen that the maximum stress occurs at the right edge of the

quarter stres_s model. It is presumed that the stress on the left edge of the buckling model is the same.

However, in reality, the stress is perhaps 40,000 lb/in. 2 less elastically. When plasticity is considered, this

differential becomes less important and may be negligible. It will be seen that this situation is even more
evident when mode B is examined in the next section.

Mode B Analysis

The buckling failure which manifested itself as mode B (fig. 4) was caused by lateral normal thermal stresses

(fig. 7), and the dominant buckling factor was the single free edge. A summary of the situation is presented
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in figure 14wheretile bucklingregionis shownalongwith lateral normal thermalstresscontours.It can
beseenthat the largecompressivelateral normalthermalstressesareconcentratedin the lowerleft corner
of the specimen.It canalsobeseenthat thethermalstressgradientsOVrT/OX and OaT/Oy are quite large.

This makes the definition of a problem to be analyzed very difficult. This can be illustrated by examining

the three areas of figure 14 and the corresponding edge stress conditions. The stress in the y-direction is

not constant, and the edge stress on the y-faces of the plates is unequal. It can easily be seen that a variety

of problems can be selected for analysis.

Area 2 was selected for NASTItAN buckling analysis. The dimensions of this area are 5/8 in. in the x-

direction and 1 in. in the y-direction. The stress distribution selected varied linearly from 100,000 lb/in. 2 at

the left corners to 75,000 lb/in. 2 at the right corners. This problem is shown in figure 15. The NASTRAN

buckling model was developed from a lattice of plate elements with five plates in the x-direction and eight

plates in the y-direction. The buckling analysis is summarized in figure 15. Eigenvalues for the first two

modes for two boundary conditions are used to develop buckling stress distributions fl'om the baseline

thermal stress distribution (depicted by the line in fig. 15). This analysis is based on the stress distribution

at time = 30.0 sec. The results of figure 15 are consistent with the fact that the specimen has buckled

at time = 30.0 sec. Both mode 1 eigenvalues indicate buckling should have occurred before the baseline

thermal stress distribution reached the distribution represented by the line. The mode shapes associated

with the buckling analyses are presented in figure 16. The actual eigenvalues are summarized in table 2.

The mode B problem is basically an unstable situation since the plate geometry and the edge loading

are greatly interdependent. Each time a different area is chosen for analysis, a different loading and a

different loading gradient must be accommodated. Fortunately, in practice, the free edge, which allows

the buckling strength to be critical, would either be stiffened or the end would be closed out. This would

make mode A dominant over mode B and relieve the designer of some critical decisions.

CONCLUDING REMARKS

High-temperature thin-shell leading-edge buckling test data were analyzed to evaluate NASTRAN as a

finite element tool for predicting thermal buckling characteristics. It was found that buckling points could

be predicted quite well with NASTRAN. It was also found that the first three eigenvalues for four different

sets of boundary conditions were closely packed for the primary buckling mode. As a result, the boundary

conditions had much less effect on the buckling point than was anticipated. The most pronounced problem

was relating the plate area to the edge stress distribution and the stress gradient. This problem requires

pertinent judgment by the analyst.

Local plasticity occurred on the specimen analyzed. Plasticity tended to simplify the basic problem

since it effectively equalized the stress gradient from loaded edge to loaded edge. It was concluded that

the baseline edge loading (the initial loading) will be difficult to identify because of the transient nature

of thermal stress. Severeal initial loadings will be required for complicated thermal stress time histories

before a pertinent finite element buckling analysis will be effected. The basic mode shapes observed during

the tests were correctly identified using the NASTRAN program.

Ames Research Center

Dryden Flight Research Facility

National Aeronautics and Space Administration

Edwards, California, September 23, 1987
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TABLE 1.--SUMMARY OF EIGENVALUES

Edge boundary conditions _ Baseline eigenvalues Eigenvalues with plasticity effect

Ends Top Bottom Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3
SS SS C 0.925 1.064 1.211 0.895 0.962 1.081

C SS C 0.860 0.894 1.100 0.915 0.946 1.197

SS C C 0.877 1.022 1.055 0.945 0.974 1.203

C C C 0.869 1.099 1.114 0.878 1.023 1.181

_SS--Simply supported; C--Clamped.

TABLE 2.--SUMMARY OF MODE B EIGENVALUES

Edge boundary conditions a Eigenvalues

Top Bottom Left edge Right edge Mode 1 Mode 2
C C F SS 0.913 1.198

SS C F SS 0.874 1.108

aSS--Simply supported; C--Clamped; F--Free.
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Figure 1. Sketches showing leading-edge-specimen geometry, ther-

mocouple location, and restraining beam.
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Figure 2. Sketch of test condition.
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Figure 5. Plate geometry and nomencla-
ture.
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Axial normal thermal stress
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(a) Azial normal thermal stress, kib/in. 2.

Figure 7.
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(b) Lateral normal thermal stress, klb/in. 2.
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Figure 8. NASTRAN model used for buck-

ling analysis.
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Figure 9. First three mode shapes

and eigenvalues from NASTRAN buckling

analysis for various edge boundary condi-
tions.
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-- a T = f(30.0), baseline distribution

aT = ;_f(30.0) for all first modes
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Figure 10. A comparison of NASTIIAN

calculated and experimentally derived ther-

mal stress distributions at buckling.
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Baseline thermal stress distribution
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